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We study the repulsion of Brownian particles induced by a single trap on disordered chains. Two
different types of disorder are considered: random local bias fields (the Sinai model) and random
transition rates. We discuss two possible measures of segregation for each system, and show that
they can have either similar or different universal behavior, depending on the properties of diffusion
subject to the hard-core potential in each system. We also report on anomalous scaling properties for
the average trapping rate and the average density profile of the diffusing particles. It is surprisingly
shown that the latter is not spatially linear in the vicinity of the trap, but rather has a flat tail in
the case of random fields, and a nonuniversal power law in the case of random transition rates.

PACS number(s): 02.50.—r, 05.40.+j, 05.60.+w, 82.20.—w

A number of recent studies [1-15] analyze the problem
of segregation at a single trap, which corresponds to the
original Smoluchowski model of coagulation [16], a pro-
cess which involves the trapping of diffusing particles,
initially uniformly distributed throughout the space. By
segregation we mean the depletion of the particles in the
neighborhood of the trap induced by the trapping events.
The depletion zone can be characterized either by the
distance from the trap to a point at which the concen-
tration profile of the diffusing particles, P(z,t), reaches
an arbitrary fraction 8 (0 < 8 < 1) of its bulk value
(which will be referred to as the  distance) or by the dis-
tance between the trap and the nearest unreacted parti-
cle (nearest-neighbor distance). In low dimensions, these
properties have been found to differ significantly from the
classical three-dimensional results. In particular, in one
dimension, the nearest-neighbor distance (L(t)) has been
shown to increase asymptotically as t!/4 [1], while the 6
distance scales as t1/2. A related quantity of practical im-
portance, the trapping rate, has been found to decrease
as t~1/2 in the long-time limit. Physical examples of
such systems are provided by exciton trapping, quench-
ing or fusion, electron-hole and soliton-antisoliton recom-
bination, phonon upconversion, and free-radical scaveng-
ing. Examples of reactions in confined geometries in-
clude quasi-one-dimensional crystals grown inside pores
and microcapillaries, polymer chains in dilute blends,
catalytic surface reactions, and heterofusion in ultrathin
molecular wires, filaments, and pores [17-19].

All of these results pertain to diffusion of non-
interacting particles in a translationally invariant space.
It is therefore of interest to investigate the behavior of
the two measures of segregation in disordered media,
in which diffusive properties are generally anomalous
[20-23]. Very few systems have been analyzed that are
characterized by different forms of disorder. These in-
clude diffusion in a fractal medium [13], and a long-tailed
continuous-time random walk [14,15] which mimics mo-
tion in disordered media.

In this Brief Report, we study the segregation at the
single trap on two different types of disordered chains.
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The first is a chain with random local bias fields (the so-
called Sinai model), and the second is the case of random
transition rates which represents a weaker type of disor-
der. These are simplified models that mimic effects of
external potentials or internal interactions on the kinet-
ics of the depletion zone. Our study is based on extensive
numerical simulations and scaling arguments. We shall
discuss the similarities and the differences between the
two systems, which shed light on some general proper-
ties of the segregation in disordered media.

We start with the case of random local bias fields,
which is an example of the so-called Sinai model [24-29].
In this model, each site i along the linear chain has an
associated transition probability of moving to the right,
P, = %(1 + E;), where each FE; is assigned a value of +F
(0 < E < 1) with equal probability 1/2. Sinai proved
[25] that the rms displacement of a particle diffusing in
this system increases asymptotically as In? ¢, which rep-
resents a remarkable slowing down as compared to the
standard diffusion process. This is due to the difficulty
in moving against local fields induced by stretches of bias
with the same sign. The Sinai model has been suggested
as being relevant to various physical phenomena, such
as 1/f noise, dynamics of dislocations in doped crystals,
and slow dynamics of random-field magnets [24,29].

We have studied the segregation on the Sinai chain by
extensive numerical simulations. These require a consid-
erable amount of computing time, due to the extremely
slow convergence to an asymptotic regime [26]. In order
to obtain the average asymptotic profile near the trap at
z = 0, we used the exact enumeration method [21] to ac-
count for the diffusion process, with quenched local bias
fields randomly imposed on the lattice. We have studied
chains of 10° sites in length (to avoid finite-size effects),
considered up to 108 time steps, and averaged the results
over 10 configurations of Sinai chains. The results are
shown in Fig. 1(a).

The main observation from this figure is that, unlike
regular diffusion, the asymptotic spatial shape of the av-
erage density profile of the diffusion particles near the
trap is not linear, but rather does flatten out in the vicin-
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ity of the trap as time evolves. This is similar to the re-
sult obtained for a system with constant bias which drives
particles away from the trap [30]. The explanation of this
result for the Sinai system is that in the asymptotic time
limit, the dominant contribution to the average profile
comes from configurations in which successive fields ad-
jacent to the trap induce a net bias away from the trap.
Other configurations are more likely to drive the parti-
cles towards the trap, but appear to have only a small
effect on the long-time behavior. In Fig. 1(b) we show
that the average profile (P(z,t)) is a scaling function of
x/In*t. This implies that the 6 distance scales as In®¢,
which follows from the Sinai type of diffusion of the bulk.

The average nearest-neighbor distance is defined as
(L(t)) = [;° Lf(L,t)dL where f(L,t) is the probabil-
ity density function for the distance L of the nearest
particle to the trap at time ¢. The statistical proper-
ties of the average nearest-neighbor distance have been
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FIG. 1. (a) A plot of the spatial dependence of the average
profile (P(z,t)) in the vicinity of the trap (at z = 0) on
the Sinai chain. The curves summarize data obtained from
exact-enumeration simulations with E = 0.8 for (from left to
right) ¢t = (1, 4, 10, 40, 100, 400,1000) x 10° time steps. The
results represent an average over 10 configurations. (b) A
scaling plot of (P(z,t)) as a function of z/In? ¢, for the results
presented in (a).
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studied using an independent set of Monte Carlo simula-
tions. In Fig. 2 we show a plot of L(f(L,t)) as a function
of L/In? t, which suggests that the nearest-neighbor dis-
tance exhlblts the same asymptotic dependence on time
as does the § distance, namely, both scale as In?t. This
is surprising since, as we have noted, it differs from the
result in regular diffusion where the two measures have
different scaling behavior as a function of time.

We suggest that the explanation has to do with the
relation between the nearest-neighbor distance measure
and diffusive properties of tagged, hard-core particles.
Keeping track of the nearest among indistinguishable par-
ticles is equivalent to following a tagged particle which
cannot pass its successors along the chain. It is well
known that the effect of the hard-core interaction in
ordinary diffusion is to change the asymptotic rms dis-
placement from a t'/2 to a t!/4 behavior [31,32], due to
mutual interactions between the particles. Therefore, al-
though the t1/4 result for the nearest-neighbor distance in
regular diffusion has been established for noninteracting
particles, it basically reflects a measure which is related
to diffusion with hard-core interaction [4]. In the Sinai
model, one can argue that the localization induced by
the random fields is so strong that hard-core effects are
also negligible. Indeed, Koscielny-Bunde et al. [27] have
recently examined in detail the effect of hard-core inter-
action on the diffusion properties of the Sinai model, and
found that the leading asymptotic behavior of the rms
displacement is the same as for noninteracting particles.
Hence we expect that in those systems where hard-core
interaction changes the asymptotic rms displacement of
diffusion, the behavior of the nearest-neighbor distance
and the 6 distance should be different. In the second part
of this work we test this prediction for the case of random
transition rates chosen from a power-law distribution.

To complete our discussion of the Sinai chain, we con-
sider the flux into the trap for this model. Since generally
one cannot define the diffusion limit for a disordered sys-
tem, we cannot use the definition for a one-dimensional
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FIG. 2. A scaling plot of L(f(L,t)) as a function of L/In® ¢
for the Sinai model for t = (1,2, 5, 10,20, 50,100) x 10° time
steps and E = 0.8. The results represent an average over 10*
configurations.
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flux, written in terms of a spatial derivative of the con-
centration. Instead we suggest a simple argument leading
to a result supported by simulated data. The reaction
rate at time ¢ is proportional to the change in time of
the cumulative number of particles reaching the trap up
to time t. The latter is proportional to the typical dis-
tance of particles from the trap at time ¢, In?¢, since it
is unlikely that particles farther away from the trap can
reach the trap by time t. Therefore we expect the flux
to be proportional to the time derivative of the rms dis-
placement, i.e., to (Int)/¢ in the long-time limit. This
anomalous result has been found to agree with our nu-
merical simulations.

Next we study the segregation at the single static trap
for a diffusion process with random transition rates W
which are chosen from a slowly decaying distribution
having the power-law form P(W) ~ W~*(0 < a < 1).
The asymptotic rms displacement of Brownian particles
in this system is known to be proportional to tl/dw,
with d,, = (2—a)/(1 —a) [21]. Using extensive nu-
merical simulations in the exact-enumeration method, we

<P(x,t)>

0.0 n . "
0 10 20 30 40

BRIEF REPORTS

2359

found that the average profile near the trap at the origin
scales asymptotically as z/t/%, with a corresponding

~ @-distance behavior of t/9. However, an interesting re-
sult is that the spatial behavior of this average profile is
neither linear (as in regular diffusion), nor has an expo-
nential tail (as in the case of fields). Rather, we found a
surprising nonuniversal algebraic behavior which is shown
in Fig. 3(a). Our numerical results for several values of
a indicate that the average profile near the trap goes
like (z/t'/4=)#  with B having the o-dependent value
(2 — @)/2(1 + ), which has been determined empirically.
Note that @ = 0 corresponds to regular diffusion, with-
out disorder. Typical scaling plots of the average profile
are shown in Figs. 3(b) and 3(c).

The average nearest-neighbor distance for this case has
been studied using Monte Carlo simulations. Follow-
ing our discussion about the resemblance between this
measure and the diffusive properties of particles which
move subject to hard-core interaction, we refer again
to Koscielny-Bunde et al. [27], who show that the ef-
fect of the hard-core interaction on diffusion in a system
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FIG. 3. (a) Numerical results for (P(z,t)) in the vicinity of the trap for a system with random transition rates. Results are
shown for a = 0.5, and, from left to right, ¢t = (1, 5, 20, 40, 60, 80, 100) x 10? time units, averaged over 10° configurations. (b) A
scaling plot of (P(z,t)) as a function of z/t'/?= for the results presented in (a). (dw = 3). (c) A log-log plot of the scaling plot
in (b). The value of the slope 8 in the vicinity of the trap is 0.5 for this value of a, in agreement with the empirical relation
B=(2-a)/21+a).
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with such a long-tailed distribution of transition rates is
to change the form of the asymptotic rms displacement
from a proportionality to t(1=®)/(2-2) to a proportion-
ality to t(1—)/(4=32)  Hence we fit our results for the
nearest-neighbor distance to this form. In Fig. 4 we plot
L{f(L,t)) as a function of L/t(1=2)/(4=32) and indeed,
the data clearly agree with this prediction.

The flux into the trap in this disordered chain can
be obtained using a similar argument to the one pre-
sented for random fields. Taking the time derivative of
the asymptotic rms displacement in this system, t!/dw
with d,, as given above, one obtains t~1+1/dw  which was
found to be in excellent agreement with our numerical
data.

In summary, we have shown that the two measures
of segregation studied here for disordered chains, the 6
distance and the nearest-neighbor distance, can increase
asymptotically either with the same or with different time
dependence. This depends on the effect of hard-core in-
teraction on diffusion in these systems. If such an in-
teraction changes the leading asymptotic behavior of the
rms displacement in that system, the nearest-neighbor
distance measure also changes in a corresponding man-
ner. The 6 distance, however, always scales similarly
to the rms displacement of regular diffusion in the sys-
tem. In addition, we found anomalous trapping rates,
and anomalous shapes for the average density profile near
the trap. In the random bias (Sinai) model the average
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FIG. 4. A scaling plot of L(f(L,t)) as a function of
L/t(1=2)/(4=39) for o = 0.5 [(1 ~ @)/(4 — 3e) = 0.2], and
t = (1,2,5,10,20,50,100) x 10? time steps. The results rep-
resent an average over 10* configurations.

profile exhibits a tail similar to the case of global bias
away from the trap, and for random transition rates it
has a nonuniversal power-law behavior.
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